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Figure 1 shows a standard through-hole bolted joint. The bolt can be modeled as a spring,
with stiffness k,. The upper and lower bolted members can also be modeled as springs with
respective stiffnesses k; and k,. At its equilibrium length, a spring applies no axial force.
The equilibrium lengths of springs 1, 2 and b are defined as L; ¢, Lo, and Ly e, respectively.
The spring forces can be expressed as follows:

fy =k, (L —Ly,) (1.1)
flzkl(Ll_Ll,e) 1.2)
f,=k,(L,—L,,) (1.3)
where the sign convention is positive for tension and negative for compression.
F

Figure 1. Bolted joint

Note from the figure that the spring models of the clamped members are only applicable
when the clamped members are in compression, i.e., when their lengths (L4, L,) are shorter
than their equilibrium lengths (L, L>.). Physically, this means that the normal force
between the surfaces of members 1 and 2 can only be compressive, which is intuitively
obvious. From here on, we will assume compressive loads only.

From the figure, we can observe the following relation among the three spring lengths:

L=L+L, (1.4)
We can also write two equations relating the applied force, F, and spring forces:

F=f+f1, (1.5)

f=f, (1.6)
Plugging (1.1) thru (1.3) into (1.5), we obtain:

kL, +k,L, =F +k L, . +k,L,, 1.7)

And plugging (1.2) and (1.3) into (1.6), we get:
kL —k,L, = k1L1,e -k, Lz,e (1.8)



Equations (1.4), (1.7), and (1.8) comprise a system of three equations with three
unknowns, and can be expressed in standard matrix form:

1 1 1|4 0
0 k, k,||L|=|F+kL,.+kL,, (1.9)
k1 _kz 0 Lb k1L1,e o kz L2,e

The solution to this system is:

|-1 _ klkb Ll,e + klk2 Ll,e + kzF + kzkb (Lbe - Lz,e)

1.10

K (K + K )+ kK, (1.10)

L2 _ kzkb Lz,e + le + klkb (Lbe - Ll,e)+ k1k2 Lz,e (1.11)
K, (k; +K, ) +kik,

L KKy (L, + Ly )+ (K +K ) F+kiky Ly + Kok Ly 1

o ko (K, +k, )+ Kok, (1.12)

And these expressions can be plugged back into (1.1) and (1.3) to yield the forces in the
bolt and clamped members as a function of the applied force, F:

o kalkrk) ok, (Lo +Loe — L) (1.13)
k, (K, +K, ) +kk, ky (K +K; ) +kik,

. kK, E_ k;Kok, (Lie +L, - Lbe) (1.14)
ky (K, + K, )+ Kok, ky (ks +k; ) +kik,

For the special case where k, =k, and L, =L, ., these formulas simplify to:

_ 2kb =S klkb (2L1,e o Lb,e)
2k, +k, 2k, +k;

f, (1.15)

. kl = klkb (2L1,e - Lb,e)
2k, +k; 2k, +k,
In both the special and general cases, the forces in the bolt and clamped members are seen
to vary linearly with the applied force, F. With no applied force (F=0), the forces in the bolt
and clamped members are equal and opposite, as would be expected. Also note the slopes
in both (1.13) and (1.14) are positive (for positive spring constants). This means when F
increases in the positive direction, so do the forces in the bolt and clamped members. In
the case of the bolt which begins in tension (for F=0), the tensile force increases as F
increases. However, the clamped members begin under compression, meaning f, is
negative. Therefore an increase in F moves this compressive force closer to zero,
decreasing its magnitude.

f, (1.16)

For the more special case where the clamped members are much stiffer than the bolt
(k1=k>>>ky), (1.15) and (1.16) become:

f, =k, (2L, - L) (1.17)
f,=F -k (2L, —L,,) (1.18)



For this case, the tensile force in the bolt is independent of the applied force, F. The
compressive force in the clamped members decreases (or increases algebraically) with
increasing F until the clamping force reaches zero. Any further increase in F results in
separation of the clamped surfaces, which this model does not take into account.



